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ÂÂÅÄÅÍÈÅ

Â íà÷àëå 70-õ ãîäîâ ïðîøëîãî âåêà íà÷àëà àêòèâíî ðàçâèâàòüñÿ

ãèïîòåçà î ñâÿçè ýíòðîïèè è ãîðèçîíòà ñîáûòèé ÷åðíîé äûðû. Èäåÿ î òîì,

÷òî ïëîùàäü ãîðèçîíòà ñîáûòèé ÷åðíîé äûðû â ïðîöåññå åå ýâîëþöèè âåäåò

ñåáÿ òàê æå, êàê è ýíòðîïèÿ, ñïîäâèãëî ê ïðåäïîëîæåíèþ îá èõ ðàâåíñòâå.

Ýòà ñâÿçü áûëà, â ÷àñòíîñòè, ïðîäåìîíñòðèðîâàíà â ðàáîòàõ [5, 12]. Îäíàêî,

íàëè÷èå ýíòðîïèè ó ÷åðíîé äûðû äîëæíî áûëî ïðèâîäèòü è ê íàëè÷èþ

òåìïåðàòóðû ó ÷åðíîé äûðû, ÷òî, íà òîò ìîìåíò, ñòàâèëî ïîä ñîìíåíèå

òàêîé ïîäõîä. Â 1974 Ñ.Õîêèíã îïóáëèêîâàë ñòàòüþ [4](áîëåå ïîçäíÿÿ

âåðñèÿ), â êîòîðîé, îñíîâûâàÿñü íà êâàíòîâîé òåîðèè ïîëÿ â èñêðèâëåííîì

ïðîñòðàíñòâå-âðåìåíè ÷åðíîé äûðû Øâàðöøèëüäà, îí ïîêàçàë íàëè÷èå ó

÷åðíîé äûðû ñ ìàññîé m òåìïåðàòóðû:

ΘBH =
~c3

8πGmk

Çäåñü ~ - ïîñòîÿííàÿ Ïëàíêà, - ñêîðîñòü ñâåòà, G - ãðàâèòàöèîííàÿ

ïîñòîÿííàÿ, k - ïîñòîÿííàÿ Áîëüöìàíà.

Âàæíî îòìåòèòü, ÷òî ïðè ýòîì ñïåêòð èçëó÷åíèÿ ñîîòâåòñòâîâàë

ïëàíêîâñêîìó ñïåêòðó. Â ñâîþ î÷åðåäü, èçëó÷åíèå ÷åðíîé äûðû âåäåò ê

ïîòåðè ýíåðãèè ÷åðíîé äûðû, è êàê ñëåäñòâèå, ê åå èñïàðåíèþ. Ñàì ôàêò

èñïàðåíèÿ ÷åðíûõ äûð âåäåò ê ïàðàäîêñó èñ÷åçíîâåíèÿ èíôîðìàöèè â

÷åðíîé äûðå. Äåëî â òîì, ÷òî èíôîðìàöèÿ î òåëå, ïîïàâøåì â ÷åðíóþ

äûðó (òàêàÿ, íàïðèìåð, êàê ñïèí, áàðèîííûé, ëåïòîííûé çàðÿäû), â ñèëó

íàëè÷èÿ ãîðèçîíòîâ, íèêàê íå ìîæåò áûòü èçâëå÷åíà. Òàê êàê ÷åðíàÿ

äûðà èñïàðÿåòñÿ ñ õàðàêòåðíûì òåïëîâûì ñïåêòðîì, òî â ðåçóëüòàòå

óíè÷òîæàåòñÿ âñÿ èíôîðìàöèè îá óïàâøåì òåëå. Ê îáñóæäåíèþ ýòîé

ïðîáëåìû ìû âåðíåìñÿ â çàêëþ÷åíèè äàííîé ðàáîòû.

Èç ñîîáðàæåíèé ïðèíöèïà ýêâèâàëåíòíîñòè ñëåäîâàëî îæèäàòü, ÷òî

òåìïåðàòóðà âîçíèêàåò è â ñëó÷àå ðàâíîóñêîðåííîãî íàáëþäàòåëÿ. Òàê,
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â 1976 ãîäó Ó.Óíðó [2] îáíàðóæèë, ÷òî ðàâíîóñêîðåííûé íàáëþäàòåëü ñ

óñêîðåíèåì a "÷óâñòâóåò"ïëàíêîâñêèé ñïåêòð ñ òåìïåðàòóðîé:

TU =
~a

2πkc

Â ýòîé ðàáîòå ìû ðàññìîòðèì ýôôåêò Óíðó è ðàçëè÷íûå ïîäõîäû

ê íåìó, è èç ïîëó÷åííûõ ðåçóëüòàòîâ, îñíîâûâàÿñü íà ïðèíöèïå

ýêâèâàëåíòíîñòè, ñäåëàåì êà÷åñòâåííûå âûâîäû êàñàòåëüíî èñïàðåíèÿ

÷åðíûõ äûð. Â ïåðâîé ÷àñòè ìû êðàòêî îñâåòèì ýëåìåíòû êâàíòîâîé

òåîðèè ïîëÿ â èñêðèâëåííîì ïðîñòðàíñòâå. Âî âòîðîé - ðàññìîòðèì

ñóùåñòâóþùèå ñïîñîáû ïîëó÷åíèÿ òåìïåðàòóðû Óíðó. Òðåòüÿ ÷àñòü

áóäåò ïîñâÿùåíà ñâîéñòâàì äàííîãî ýôôåêòà. Â ÷åòâåðòîé ÷àñòè áóäåò

ïðåäñòàâëåíà ïîïûòêà ïîëó÷åíèÿ òåìïåðàòóðû Óíðó, îñíîâîâàííàÿ íà

ïîäõîäå Ôåéíìàíà.

Â èñïîëüçóåìîé ñèñòåìå åäèíèö ~ = c = k = 1, âûáðàííàÿ ñèãíàòóðà

(+, -, -, -).
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1. Êâàíòîâàíèå ïîëåé

1.1. Êâàíòîâàíèå â ïðîñòðàíñòâå Ìèíêîâñêîãî

Ðàññìîòðèì ñêàëÿðíîå ïîëå φ(t,x) â ïðîñòðàíñòâå Ìèíêîâñêîãî ñ

ìåòðèêîé:

ds2 = dt2 − dx2 − dy2 − dz2 = ηαβx
αxβ (1..1)

Çàäàäèì äåéñòâèå:

S =

∫
L(x)d4x (1..2)

ãäå ïëîòíîñòü Ëàãðàíæèàíà:

L(x) =
1

2
(ηαβφ,αφ,β −m2φ2) (1..3)

Çäåñü ηαβ - òåíçîð, îáðàòíûé ηαβ. Âàðüèðóÿ äåéñòâèå, ìîæíî ïîëó÷èòü

óðàâíåíèÿ äâèæåíèÿ Ýéëåðà-Ëàãðàíæà, êîòîðûå â äàííîì ñëó÷àå

ïðèíèìàþò âèä óðàâíåíèÿ Êëåéíà-Ãîðäîíà:

(�+m2)φ = 0, � = ηαβ∂α∂β (1..4)

Îäèí èç íàáîðîâ ðåøåíèÿ äàííîãî óðàâíåíèÿ ìîæíî ïðåäñòàâèòü â âèäå:

uk(t,x) = (2ω(2π)3)−
1
2eikx−iωt, ω = (k2+m2)

1
2 , k = |k|, ω > 0 (1..5)
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Ââåäåì ñêàëÿðíîå ïðîèçâåäåíèå:

(φ1, φ2) = −i
∫
t

(φ1∂tφ
∗
2 − (∂tφ1)φ

∗
2)d

3x (1..6)

Â ýòîì ñëó÷àå ñèñòåìà ôóíêöèé uk áóäåò îðòîíîðìèðîâàííîé:

(uk, uk′) = δ3(k− k′) (1..7)

×òîáû ïðîêâàíòîâàòü ïîëå, ñëåäóåò ðàññìàòðèâàòü φ(t, x) â êà÷åñòâå

ýðìèòîâîãî îïåðàòîðà. Ñ ó÷åòîì òîãî, ÷òî ìîäû ïîëÿ uk è u∗k îáðàçóþò

îðòîíîðìèðîâàííûé áàçèñ ñî ñêàëÿðíûì ïðîèçâåäåíèåì (1.6), ìîæíî

ïðåäñòàâèòü ïîëå φ(t, x) â âèäå:

φ(t,x) =
∑
k

(akuk(t,x) + a†ku
∗
k(t,x)) (1..8)

Ââåäåííûå îïðåàòîðû, ïî àíàëîãèè ñ ãàðìîíè÷åñêèì îñöèëëÿòîðîì â

êëàññè÷åñêîé êâàíòîâîé ìåõàíèêå, èãðàþò ðîëü îïåðàòîðîâ ðîæäåíèÿ

è óíè÷òîæåíèÿ ÷àñòèö ñ èìïóëüñîì k è óäîâëåòâîðÿþò ñëåäóþùèì

êîììóòàöèîííûì ñîîòíîøåíèÿì:

[ak, ak′] = 0, [a†k, a
†
k′] = 0, [ak, a

†
k′] = δkk′ (1..9)

Èñïîëüçóÿ ýòè îïåðàòîðû, ìîæíî ïîñòðîèòü ïðîñòðàíñòâî äèíàìè÷åñêèõ

ñîñòîÿíèé ïîëÿ - ïðîñòðàíñòâî Ôîêà, îïðåäåëÿåìîå êàê òåíçîðíîå

ïðîèçâåäåíèå ñîîòâåòñòâóþùèõ îäíî÷àñòè÷íûõ ñîñòîÿíèé. Âàêóóìíîå

ñîñòîÿíèå ïîëÿ |0〉 îïðåäåëÿåòñÿ:

ak |0〉 = 0, ∀k (1..10)
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Â äàëüíåéøåì íàì ïîíàäîáÿòñÿ îïåðàòîðû:

Nk = a†kak, N =
∑
k=1

Nk (1..11)

Ýòè îïåðàòîðû èìåþò ñìûñë ÷èñëà ÷àñòèö ñ èìïóëüñîì k è ïîëíîãî ÷èñëà

÷àñòèö ñîîòâåòñòâåííî. Â ÷àñòíîñòè, 〈0|Nk|0〉 = 0 ∀k, ÷òî îáîçíà÷àåò

ïîëíîå îòñóòñòâèå ÷àñòèö â âàêóóìå Ìèíêîâñêîãî.

1.2. Êâàíòîâàíèå â èñêðèâëåííîì ïðîñòðàíñòâå

Â ñëó÷àå èñêðèâëåííîãî ïðîñòðàíñòâà ïðåîáðàçóåì ïëîòíîñòü

Ëàãðàíæèàíà ñëåäóþùèì îáðàçîì (gαβ - ìåòðè÷åñêèé òåíçîð, g - åãî

äåòåðìèíàíò):

L(x) =
1

2
[−g(x)]

1
2 (gαβ(x)φ,αφ,β − [m2 + ξR(x)]φ2) (1..12)

Â ïîñëåäíåì ñëàãàåìîì, îïèñûâàþùåì âçàèìîäåéñòâèå ñ ãðàâèòàöèîííîì

ïîëåì, R(x) - ñêàëÿð Ðè÷÷è, ξ - íåêîòîðûé ïàðàìåòð (â òåêóùåé

ðàáîòå ýòî ñëàãàåìîå ìîæíî îïóñòèòü, òàê êàê ðàññìàòðèâàåòñÿ ïëîñêîå

ïðîñòðàíñòâî). Óðàâíåíèÿ Ýéëåðà-Ëàãðàíæà ïðèíèìàþò âèä:

(�+m2 + ξR(x))φ = 0, � = gαβ∇α∇β (1..13)

Cêàëÿðíîå ïðîèçâåäåíèå îáîáùàåòñÿ èíòåãðàëîì ïî

ïðîñòðàíñòâåííîïîäîáíîé ãèïåðïîâåðõíîñòè:

(φ1, φ2) = −i
∫
Σ

[φ1∂µφ
∗
2 − (∂µφ1)φ

∗
2](−g(x))

1
2dΣµ (1..14)

Ïî àíàëîãèè ñ ïðîñòðàíñòâîì Ìèíêîâñêîãî, ìîæíî íàéòè íàáîð

îðòîíîðìèðîâàííûõ ìîä uk è ðàçëîæèòü ïî íèì ïîëå:
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φ(x) =
∑
k

(akuk(t,x) + a†ku
∗
k(t,x)) (1..15)

Çäåñü ak, a†k óäîâëåòâîðÿþò òåì æå êîììóòàöèîííûì ñîîòíîøåíèÿì

(1.9). Ìîæíî ïî àíàëîãèè îïðåäåëèòü ïðîñòðàíñòâî äèíàìè÷åñêèõ

ñîñòîÿíèé ïîëÿ, îäíàêî òåïåðü âîçíèêàåò íåîïðåäåëåííîñòü ñâÿçàííàÿ ñ

îòñóòñòâèåì (â îáùåì ñëó÷àå) ñèììåòðèè óðàâíåíèÿ (1.4). Äåéñòâèòåëüíî,

â ïðîñòðàíñòâå Ìèíñêîâñêîãî íîðìàëüíûå ìîäû (1.3) îêàçûâàþòñÿ

ñâÿçàííûìè ñ îðòîãîíàëüíîé ñèñòåìîé êîîðäèíàò (t, x, y, z). Ýëåìåíò

äëèíû â ïðîñòðàíñòâå Ìèíêîâñêîãî èíâàðèàíòåí îòíîñèòåëüíî äåéñòâèÿ

ãðóïïû Ïóàíêàðå, îòêóäà è ñëåäóåò èíâàðèàíòíîñòü óðàâíåíèÿ

(1.4)(ñëåäîâàòåëüíî,è âàêóóìíîãî ñîñòîÿíèÿ) ïðè ïåðåõîäå îò îäíîãî

èíåðöèàëüíîãî íàáëþäàòåëÿ ê äðóãîìó. Â ñëó÷àå èñêðèâëåííîãî

ïðîñòðàíñòâà-âðåìåíè âîçìîæíî ñóùåñòâîâàíèå âåêòîðíûõ ïîëåé

Êèëëèíãà (ïîëÿ, ïî íàïðàâëåíèþ êîòîðûõ ïðîèçâîäíàÿ Ëè îò ìåòðèêè

ðàâíà íóëþ, à, çíà÷èò, ñîõðàíÿåòñÿ è ýëåìåíò äëèííû), ïðè ýòîì íåòðóäíî

îïðåäåëèòü ïîëåâûå ìîäû àññîöèèðóåìûå ñ ýòèìè ïîëÿìè. Îäíàêî, â

îáùåì ñëó÷àå, âåêòîðíûå ïîëÿ Êèëëèíãà îòñóòñòâóþò è íåò âûäåëåííûõ

íàïðàâëåíèé äëÿ êâàíòîâàíèÿ ïîëÿ, â ðåçóëüòàòå ÷åãî íåò óíèâåðñàëüíîãî

ðàçáèåíèÿ íà ìîäû è, â ÷àñòíîñòè, âîçíèêàåò íåîäíîçíà÷íîñòü â

îïðåäåëåíèè âàêóóìíîãî ñîñòîÿíèÿ. ×òîáû ïðîäåìîícòðèðîâàòü ýòî,

ïðåäñòàâèì ïîëå φ(t, x) â âèäå ðàçëîæåíèÿ ïî äðóãîìó ïîëíîìó íàáîðó

íîðìàëüíûõ ìîä:

φ(x) =
∑
k

(akuk + a†ku
∗
k) (1..16)

Òàêîå ðàçëîæåíèå îïðåäåëÿåò íîâîå ñîñòîÿíèå âàêóóìà 0:

ak |0〉 = 0, ∀k (1..17)
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Â ñèëó ïîëíîòû îáîèõ ðàçëîæåíèé, ïîëåâûå ìîäû ìîãóò áûòü âûðàæåíû

äðóã ÷åðåç äðóãà:

ui =
∑
k

(αikuk + βiku
∗
k) (1..18)

Òàêîå ñîîòíîøåíèå íàçûâàåòñÿ ïðåîáðàçîâàíèåì Áîãîëþáîâà, à βik, αik

- êîýôôèöèåíòàìè Áîãîëþáîâà. Íåòðóäíî ïîêàçàòü, ÷òî åñëè βik 6= 0,

òî âàêóóì îäíîãî ïîëÿ âûðàæàåòñÿ ÷åðåç ïîëåâûå ìîäû äðóãîãî è, â

÷àñòíîñòè:

〈0|Nk|0〉 =
∑
i

|βik|2 (1..19)

Ïîñëåäíåå è îáîçíà÷àåò, ÷òî çàìåíà êîîðäèíàò ìîæåò ïðèâåñòè ê

âîçíèêíîâåíèþ ÷àñòèö â îäíîì âàêóóìå ïðè èõ ïîëíîì îòñóòñòâèè â äðóãîì

âàêóóìå.
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2. Ýôôåêò Óíðó

2.1. Ïåðåõîä â êîîðäèíàòû Ðèíäëåðà

Êàê óæå áûëî ñêàçàíî ðàíåå, ýôôåêò Óíðó çàêëþ÷àåòñÿ â

îáíàðóæåíèè ïëàíêîâñêîãî ñïåêòðà óñêîðÿþùèìñÿ íàáëþäàòåëåì.

Ðàññìîòðèì ïðîñòðàíñòâî Ìèíêîâñêîãî ñ ìåòðèêîé (1.1) Äëÿ ïîëó÷åíèÿ

òðàåêòîðèè â ñëó÷àå ðàâíîóñêîðåííîãî äâèæåíèÿ ðàññìîòðèì ñèñòåìó:


uµuµ = 1

aµaµ = −ρ2

aµ = uνuµ;ν

(2..1)

Çäåñü uµ - êîîðäèíàòû 4-ñêîðîñòè, aµ - êîîðäèíàòû 4-óñêîðåíèÿ, ρ

- ìîäóëü óñêîðåíèÿ. Â ñëó÷àå, êîãäà óñêîðåíèå íàïðàâëåíî ñòðîãî âäîëü

îäíîé èç êîîðäèíàò, ïîñëå íåñëîæíûõ ïðåîáðàçîâàíèé ìîæíî ïîëó÷èòü

ñëåäóþùóþ ñèñòåìó äèôôåðåíöèàëüíûõ óðàâíåíèé:

a
0 = ρu1

a1 = ρu0
(2..2)

Â ðåçóëüòàòå òðàåêòîðèÿ óñêîðÿþùåãîñÿ íàáëþäàòåëÿ âäîëü x ïðèíèìàåò

âèä:
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

x = ρ−1cosh(ρτ)

t = ρ−1sinh(ρτ)

y = const

z = const

(2..3)

Çäåñü τ - ñîáñòâåííîå âðåìÿ óñêîðÿþùåãîñÿ íàáëþäàòåëÿ. Äàëåå

ðàññìîòðèì äâóìåðíûé ñëó÷àé. Ïðîèçâåäåì çàìåíó êîîðäèíàòó:

x = a−1eaξcosh(aη)

t = a−1eaξsinh(aη)
(2..4)

a = const > 0. Òîãäà ìåòðèêà ïðèíèìàåò âèä:

ds2 = e2aξ(dη2 − dξ2) (2..5)

Òàêàÿ ñèñòåìà êîîðäèíàò íàçûâàåòñÿ ñèñòåìîé êîîðäèíàò Ðèíäëåðà.

Ðèñ. 2.1: *
Òðàåêòîðèÿ ïîñòîÿííîé êîîðäèíàòû ξ â ïðîñòðàíñòâå Ìèíêîâñêîãî.

Èç âèäà (2.4) ïîíÿòíî, ÷òî íàáëþäàòåëü ñ ξ = const äâèæåòñÿ ñ

ïîñòîÿííûì óñêîðåíèåì â ïðîñòðàíñòâå Ìèíêîâñêîãî, à ñîáñòâåííîå âðåìÿ

íàáëþäàòåëÿ τ = eaξη. Çàìåòèì, ÷òî òàêàÿ êàðòà ïîêðûâàåò òîëüêî

÷åòâåðòü ïðîñòðàíñòâà Ìèíêîâñêîãî |x| > t. Âòîðîé êëèí Ðèíäëåðà ïðè
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x < |t| ìîæíî ïîëó÷èòü, îòðàæàÿ ñíà÷àëà îñü t, à çàòåì îñü x. Äëÿ

ýòîãî äîñòàòî÷íî ïîìåíÿòü çíàêè â óðàâíåíèÿõ ïðåîáðàçîâàíèÿ êîîðäèíàò,

ïðè ýòîì â ëåâîì êëèíå Ðèíäëåðà âîçðàñòàíèþ t áóäåò ñîîòâåòñòâîâàòü

óáûâàíèå ξ. Âàæíî îòìåòèòü, ÷òî â ïðîñòðàíñòå Ðèíäëåðà âîçíèêàþò

ãîðèçîíòû - ëåâûé è ïðàâûå êëèíû Ðèíäëåðà ïðè÷èííî íå ñâÿçàíû.

Ðàññìîòðèì êâàíòîâàíèå áåçìàññîâîãî ñêàëÿðíîãî ïîëÿ â ðèíäëåðîâñêîé

ñèñòåìå êîîðäèíàò. Òàê êàê ïîëå áåçìàññîâî, à â äâóìåðíîì ñëó÷àå ìåòðèêà

(2.5) êîíôîðìíà ìåòðèêå ïðîñòðàíñòâà Ìèíêîâñêîãî, òî ìîäû ïîëÿ èìåþò

âèä:

uk(ξ, η) = (4ωπ)−
1
2eikξ±iωη, ω = |k| (2..6)

Çäåñü − îòíîñèòñÿ ê ïðàâîìó êëèíó R, + - ê ëåâîìó L. Ââåäåì ôóíêöèè:

u
R
k = (4ωπ)−

1
2eikξ−iωη, ξ, η ∈ R

uRk = 0, ξ, η ∈ L

u
L
k = (4ωπ)−

1
2eikξ+iωη, ξ, η ∈ L

uLk = 0, ξ, η ∈ R
(2..7)

Ïî îòäåëüíîñòè êàæäûé èç íàáîðîâ ðåøåíèé uRk , u
L
k íå ÿâëÿåòñÿ ïîëíûì

ðåøåíèåì â ïðîñòðàíñòâå Ìèíêîâñêîãî. Îäíàêî, â ñîâîêóïíîñòè ýòè ìîäû

îáðàçóþò ïîëíóþ ñèñòåìó â ïðîñòðàíñòâå Ìèíêîâñêîãî. Ëèíèè η = const

(ïåðåñåêàþùèå îáå îáëàñòè L è R) ÿâëÿþòñÿ ïîâåðõíîñòÿìè Êîøè äëÿ

âñåãî ïðîñòðàíñòâà-âðåìåíè. Ìîäû (2.7) ìîæíî àíàëèòè÷åñêè ïðîäîëæèòü

è â îáëàñòè, îòìå÷åííûå íà äèàãðàììå ëèòòåðàìè F è P [2](ïðè ýòîì a

ñòàíîâèòñÿ ìíèìîé). Òîãäà ïîëå ìîæíî ïðåäñòàâèòü â âèäå ðàçëîæåíèåÿ

ïî ýòèì ìîäàì:

φ =
∑
k

(b
(1)
k uk

L + b
(1)
k

†
u∗k

L + b
(2)
k uk

R + b
(2)
k

†
u∗k

R) (2..8)

Ïðè ýòîì ïîëå ìîæíî ðàçëîæèòü è ïî ìîäàì ïðîñòðàíñòâà Ìèíêîâñêîãî

(1.8) (çàìåòèì, ÷òî â ñëó÷å äâóìåðíîãî ïðîñòðàíñòâà íîðìèðóþùèé
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ìíîæèòåëü ðàâåí (4πω)−
1
2 ), ÷òî è ïðèâîäèò ê âîçíèêíîâåíèþ äâóõ

âàêóóìíûõ ñîñòîÿíèé |0M〉 = 0 è |0R〉 = 0, îïðåäåëåííûõ ñîîòíîøåíèÿìè

(1.9) è

b
(1)
k |0R〉 = bk

(2) |0R〉 = 0 (2..9)

Ïðåæäå âñåãî çàìåòèì, ÷òî ýòè âàêóóìû íå ÿâëÿþòñÿ ýêâèâàëåíòíûìè:

ïîëåâûå ìîäû âàêóóìà ïðîñòðàíñòâà Ðèíäëåðà íå ïðåîáðàçóþòñÿ ãëàäêî

ïðè ïåðåõîäå èç L â R. Äåéñâèòåëüíî, ïðè ïåðåõîäå ÷åðåç òî÷êó (ξ, η) =

(0, 0) ïîêàçàòåëü ýêñïîíåíòû, ñîãëàñíî (2.7), ìåíÿåò çíàê, ÷òî è ãîâîðèò

îá íåàíàëèòî÷íîñòè ïîëåâûõ ìîä. Â ïðîòèâîïîëîæíîñòü ýòîìó, ìîäû

ïðîñòðàíñòâà Ìèíêîâñêîãî àíàëèòè÷íû âñþäó, ïîýòîìó ìîæíî ãîâîðèòü

î íàëè÷èè íåíóëåâûõ êîýôôèöèåíòîâ βik ïðè ïðåîáðàçîâàíèè áàçèñà â

ôîêîâñêîì ïðîñòðàíñòâå. ×òîáû ïîñ÷èòàòü êîýôôèöèåíòû Áîãîëþáîâà,

ìîæíî âîñïîëüçîâàòüñÿ ïðÿìûì îïðåäåëåíèåì è íàéòè ñêàëÿðíûå

ïðîèçâåäåíèÿ ñîîòâåòñòâóþùèõ ìîä. Îäíàêî, áîëåå èçÿùíî ìîæíî

ïîëó÷èòü òîò æå ðåçóëüòàò, âîñïîëüçîâàâøèñü ìåòîäîì, ïðåäëîæåííûì

Óíðó. Äëÿ ýòîãî äîñòàòî÷íî çàìåòèòü, ÷òî õîòü uRk , u
L
k íåàíàëèòè÷íû, èõ

ëèíåéíûå ëèíåéíûå êîìáèíàöèè:

u
R
k + e−πω/au∗L−k

u∗R−k + eπω/auLk

(2..10)

Àíàëèòè÷íû â òî÷êå (ξ, η) = (0, 0) è îáëàäàþò òåìè æå ñâîéñòâàìè,

÷òî è ìîäû ïðîñòðàíñòâà Ìèíêîâñêîãî. Èç ýòîãî ñëåäóåò, ÷òî òàêèå

ëèíåéíûå êîìáèíöàèè ñîîòâåòñòâóþò âàêóóìíîìó ñîñòîÿíèþ ïðîñòðàíñòâà

Ìèíêîâñêîãî |0M〉. Òàêèì îáðàçîì, èìååì:
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
φ =

+∞∑
k=−∞

[2sh(πω/a)(dk
(1)[eπω/2auRk + e−πω/2au∗L−k] + dk

(2)[e−πω/2au∗R−k + eπω/2auLk ])

+H.C.

dk
(1) |0M〉 = d(k)

2 |0M〉 = 0

(2..11)

Çäåñü H.C. - ýðìèòîâî-ñîïðÿæåííàÿ ÷àñòü. Îòñþäà ìîæíî ïîëó÷èòü

ïðåîáðàçîâàíèå Áîãîëþáîâà è, ñëåäîâàòåëüíî, ñâÿçü ìåæäó âàêóóìíûìè

ñîñòîÿíèÿìè:

bk
(1) = [2sh(πω/a)]−1/2[eπω/2adk

(2) + e−πω/2adk
(1)†]

bk
(2) = [2sh(πω/a)]−1/2[eπω/2adk

(1) + e−πω/2adk
(2)†]

(2..12)

Ðàññìîòðèì òåïåðü íàáëþäàòåëÿ, äâèæóùåãîñÿ ñ ïîñòîÿííûì óñêîðåíèåì

â ïðîñòðàíñòâå Ìèíêâñêîãî. Â ïðîñòðàíñòâå Ðèíäëåðà òàêîå äâèæåíèå

ñîîòâåòñâóåò òðàåêòîðèè ξ = const. Ïðè ýòîì ñîáñòâåííîå âðåìÿ

íàáëþäàòåëÿ áóäåò ïðîïîðöèîíàëüíî êîîðäèíàòå η, è ñëåäîâàòåëüíî,

âàêóóìíîå ñîñòîÿíèå ðèíäëåðîâñêèõ íàáëþäàòåëåé áóäåò àññîöèèðîâàòüñÿ

ñ ïîëîæèòåëüíî-÷àñòîòíûìè ìîäàìè ïî îòíîøåíèþ ê η. Ñîãëàñíî (1.19),

(2.8) è (2.12) ðèíäëåðîâñêèé íàáëþäàòåëü îáíàðóæèò:

〈0M |b†kbk|0M〉 = e−πω/a/[2sh(πω/a)] = (e2πω/a − 1)−1 (2..13)

÷àñòèö ñ èìïóëüñîì k. Òàêîå ðàñïðåäåëåíèå ÷àñòèö â òî÷íîñòè ñîîòâåòñâóåò

ïëàíêîâñêîìó ñïåêòðó ñ òåìïåðàòóðîé T0 =
a

2π
. Òîãäà, ñîãëàñíî

ñîîòíîøåíèþ Òîëìåíà [6], âûòåêàþùåãî èç ðàçíîñòè ìåæäó ñîõðàíÿþùåéñÿ

è ëîêàëüíîé ýíåðãèÿìè, íàáëþäàòåëü ñ ïîñòîÿííûì óñêîðåíèåì áóäåò

÷óâñòâîâàòü òåìïåðàòóðó:

T =
T0√
g00

=
a

2π
e−aξ (2..14)
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Â ìåòðèêå (2.5) ñóùåñòâóåò äðóãîé, íåñêîëüêî ýâðèñòè÷åñêèé ìåòîä

ïîëó÷åíèÿ òåìïåðàòóðû. Äëÿ ýòîãî ïðîèçâåäåì âèêîâñêèé ïîâîðîò: η = iτ .

Òîãäà ëèíåéíûé ýëåìåíò ñ òî÷íîñòüþ äî çíàêà ïåðåõîäèò â:

ds2 = e2aξ(dτ 2 + dξ2)

Ïðè ýòîì çàìåòèì, ÷òî åñëè ïðîèçâåñòè âèêîâñêèé ïîâîðîò è â

ïðîñòðàíñòâå Ìèíêîâñêîãî t = iζ, òî ôîðìóëû ïðåîáðàçîâàíèÿ êîîðäèíàò

(2.4) ïðèíèìàþò âèä: x = a−1eaξcos(aτ)

ζ = a−1eaξsin(aτ)

Îòñþäà âèäíî, ÷òî êîîðäèíàòà τ ÿâëÿåòñÿ öèêëè÷åñêîé êîîðäèíàòîé. Ýòî

íàãëÿäíåå ïðîÿâëÿåòñÿ, åñëè ïåðåéòè ê ïîëÿðíîé êîîðäèíàòå ρ = a−1eaξ:

ds2 = ρ2d(aτ)2 + dρ2

Ïðè ýòîì ïîëó÷àåòñÿ ìåòðèêà ëîêàëüíî-ïëîñêîãî äâóìåðíîãî

åâêëèäîâà ïðîñòðàíñòâà â ïîëÿðíûõ êîîðäèíàòàõ. Äàáû èçáåæàòü êîíóñíîé

îñîáåííîñòè, ïîòðåáóåì, ÷òîáû ïåðèîä τa = 2π (ïîëîâèíà ïðîñòðàíñòâà-

âðåìåíè Ìèíêîâñêîãî îáðàùàåòñÿ â åâêëèäîâó ïëîñêîñòü). Ïðèìå÷àòåëüíî

òî, ÷òî òåìïåðàòóðà Óíðó ïîëó÷àåòñÿ ñâÿçàíîé ñ ïåðèîäîì T = τ−1 =
a

2π
. Íà ïåðâûé âçãëÿä, òàêîé ïîäõîä êàæåòñÿ ñëó÷àéíîñòüþ, îäíàêî,

àíàëîãè÷íûå ðàññóæäåíèÿ ïðèâîäÿò ê âåðíûì ðåçóëüòàòàì è â ñëó÷àå

÷åðíîé äûðû Øâàðöøèëüäà [10, 15].

2.2. Óñêîðåííûé äåòåêòîð â ïðîñòðàíñòâå Ìèíêîâñêîãî

Ðåçóëüòàò, ðàññìîòðåííûé âûøå, ìîæíî ïîëó÷èòü è íå ïåðåõîäÿ

â äðóãèå êîîðäèíàòû. Äëÿ ýòîãî âîñïîëüçóåìñÿ ìîäåëüþ äåòåêòîðà,

ïðåäëîæåííîé Óíðó è Äå Âèòòîì [2]. Òàêîé äåòåêòîð ïðåäñòàâëÿåò

ñîáîé òî÷å÷íóþ ÷àñòèöó ñ âíóòðåííèìè óðîâíÿìè ýíåðãèè E, ñâÿçàííóþ

ìîíîïîëüíûì âçàèìîäåéñòâèåì ñ ïîëåì φ.

Ðàññìîòðèì äåòåêòîð, äâèæóùèéñÿ â ïðîñòðàíñòâå Ìèíêîâñêîãî ñ

òðàåêòîðèåé xµ(τ), τ - ñîáñòâåííîå âðåìÿ. Âçàèìîäåéñòâèå äåòåêòîðà

ñ ïîëåì îïèñûâàåòñÿ ëàãðàíæèàíîì cm(τ)φ(x(τ)), ãäå c - êîíñòàíòà
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ñâÿçè, m - îïåðàòîð ìîíîïîëüíîãî ìîìåíòà äåòåêòîðà. Ïóñòü èçíà÷àëüíî

ïîëå íàõîäèòñÿ â âàêóóìíîì ñîñòîÿíèè |0M〉. Ïðè äâèæåíèè äåòåêòîðà

ïî ïðîèçâîëüíîé òðàåêòîðèè â îáùåì ñëó÷àå ñëåäóåò îæèäàòü ïåðåõîä

äåòåêòîðà èç îñíîâíîãî ñîñòîÿíèÿ E0 â âîçáæäåííîå E > E0, âìåñòå ñ

òåì êàê ïîëå ïåðåõîäèò â âîçáóæäåííîå ñîñòîÿíèå |ψ〉. Â ïåðâîì ïîðÿäêå

òåîðèè âîçìóùåíèÿ àìïëèòóäà ïåðåõîäà â âîçáóæäåííîå ñîñòîÿíèå áóäåò

îïðåäåëÿòüñÿ [1]:

ic 〈E,ψ|
+∞∫
−∞

m(τ)φ(x(τ))dτ |0M , E0〉 (2..15)

Âðåìåííàÿ ýâîëþöèÿ m(τ) îïèñûâàåòñÿ ñîãëàñíî:

m(τ) = eiH0τm(0)e−iH0τ , (2..16)

ãäå H0 |E〉 = E |E〉. Ôàêòîðèçóÿ àìïëèòóäó ïåðåõîäà:

ic 〈E|m(0)|E0〉
+∞∫
−∞

ei(E−E0)τ 〈ψ|φ(x)|0M〉 dτ (2..17)

Ïóñòü ïîëå ðàçëîæåíî ïî ìîäàì (1.8), òîãäà â ïåðâîì ïîðÿäêå ìîãóò

ïðîèñõîäèòü ïåðåõîäû òîëüêî â îäíî÷àñòè÷íûå âîçáóæäåííûå ñîñòîÿíèÿ

|ψ〉 = |1k〉. Òîãäà, ó÷èòûâàÿ íîðìèðîâêó (1.5):

〈1k|φ(x)|0M〉 =

∫
d3k′(16π3ω′)1/2 〈1k|ak′†|0M〉 eik

′x−iω′t = (16π3ω)1/2eikx−iωt

(2..18)

×òîáû ïîëó÷èòü âåðîÿòíîñòü ïðåõîäà â âîçáóæäåííîå ñîñòîÿíèå

íåîáõîäèìî ïîäñòàâèòü (2.18) â (2.17), íàéòè êâàäðàò ìîäóëÿ è

ïðîñóììèðîâàòü ïî âñåì âîçìîæíûì îäíî÷àñòè÷íûì ñîñòîÿíèÿì, ÷òî

äàåò:
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c2
∑
E

| 〈E|m(0)|E0〉 |2F (E − E0), (2..19)

ãäå F - ôóíêöèÿ îòêëèêà äåòåêòîðà, îïðåäåëÿåìàÿ:

F (E) =

+∞∫
−∞

dτ

+∞∫
−∞

dτ ′e−iE(τ−τ ′)D+(x(τ), x(τ ′)) (2..20)

Çäåñü D+ - ïîëîæèòåëüíî-÷àñòîòíàÿ âàéòìàíîâñêàÿ ôóíêöèÿ Ãðèíà [13].

Ïóñòü òðàåêòîðèÿ äâèæåíèÿ òàêàÿ, ÷òî:

D+(x(τ), x(τ ′)) = d(∆τ), ∆τ = τ − τ ′ (2..21)

Òàêàÿ ñèñòåìà áóäåò èíâàðèàòíà îòíîñèòåëüíî âðåìåííûõ òðàíñëÿöèé.

Ýòî îçíà÷àåò, ÷òî ñèñòåìà íàõîäèòñÿ â ðàâíîâåñèè è ÷èñëî ïîãëîùàåìûõ

÷àñòèö ïîñòîÿííî. Åñëè ñêîðîñòü ïîãëîùàåìûõ ÷àñòèö îòëè÷íî îò íóëÿ, òî

âåðîÿòíîñòü ïåðåõîäà (2.19) áóäåò áåñêîíå÷íà. ×òîáû îáîéòè ýòó ñèòóàöèþ

ìîæíî ðàññìàòðèâàòü àäèàáàòè÷åñêîå âûêëþ÷åíèå ïðè τ → ±∞ èëè

ðàññìàòðèâàòü âåðîÿòíîñòü ïåðåõîäà â åäèíèöó ñîáñòâåííîãî âðåìåíè:

c2
∑
E

| 〈E|m(0)|E0〉 |2
+∞∫
−∞

d∆τe−iE(∆τ)D+(∆τ) (2..22)

Â ñëó÷àå áåçìàññîâîãî ñêàëÿðíîãî ïîëÿ ôóíêöèÿ Âàéòìàíà ïðèíèìàåò âèä:

D+(x, x′) = − 1

4π2[(t− t′ − iε)2 − |x− x′|2]
, (2..23)

ãäå ε - ìàëàÿ äîáàâêà. Òåïåðü ðàññìîòðèì ãèïåðáîëè÷åñêóþ òðàåêòîðèþ

(2.3), îòâå÷àþùóþ ïîñòîÿííîìó óñêîðåíèþ ρ, ôóíêöèÿ Âàéòìàíà

ïðèíèìàåò âèä:

16



D+(∆τ) = −[
16π2

ρ2
sh2(

∆τρ

2
− iερ)]−1 (2..24)

Ðàñêëàäûâàÿ â ðÿä ãèïåðáîëè÷åñêèé ñèíóñ è ïîäñòàâëÿÿ â (2.22), ïîëó÷àåì

äëÿ âåðîÿòíîñòè ðåãèñòðàöèè ÷àñòèöû äåòåêòîðîì â åäèíèöó ñîáñòâåííîãî

âðåìåíè:

c2

2π

∑
E

(E − E0)| 〈E|m(0)|E0〉 |2

e
2π(E−E0)

ρ − 1
(2..25)

Íàëè÷èå ôàêòîðà [e
2π(E−E0)

ρ −1]−1 è óêàçûâàåò íà ïëàíêîâñêèé õàðàêòåð

èçëó÷åíèÿ, ðåãèñòðèðóåìîãî äåòåêòîðîì, ñ õàðàêòåðíîé òåìïåðàòóðîé T =
ρ

2π
, ÷òî ñîãëàñóåòñÿ ñ ïîëó÷åííûì ðàíåå âûðàæåíèåì (2.14).
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3. Êðàòêî î ãëîáàëüíîì

3.1. Äåòåêòîð â ïðîñòðàíñòâå Ìèíêîâñêîãî 2.0

Â ñëó÷àå, êîãäà äåòåêòîð ñíà÷àëà äâèæåòñÿ ñ ïîñòîÿííîé ñêîðîñòüþ,

à ïîòîì íà÷èíàåò óñêîðÿòüñÿ, ìîæíî èñïîëüçîâàòü ïîäõîä, èçëîæåííûé â

ðàçäåëå âûøå. Ýòî áûëî ñäåëàíî, â ÷àñòíîñòè, Ñ.Øëèõòîì [3]. Â ñâîåé

ðàáîòå Øëèõò ïðåäëîæèë ìîäèôèöèðîâàòü êîðåëëÿöèîííóþ ôóíêöèþ,

ââåäåííóþ ñîîòíîøåíèåì (2.23). Ðàññìàòðèâàÿ òî÷å÷íûé äåòåêòîð êàê

ïðåäåë êîíå÷íîãî æåñòêîãî äåòåêòîðà, ãäå æåñòêîñòü ââåäåíà ïî

îòíîøåíèþ ê ñîáñòâåííîé ñèñòåìå êîîðäèíàò äåòåêòîðà, îí ïîëó÷èë:

〈0|φ(τ)φ(τ ′)|0〉 =
1

4π2[x(τ)− x(τ ′)− iε(ẋ(τ) + ẋ(τ ′))]2
(3..1)

Ðàññìàòðèâàÿ òðàåêòîðèþ, ãëàäêî ïåðåõîäÿùóþ èç ïðÿìîé â ãèïåðáîëó

(ïåðåõîä îò ïîñòîÿííîé ñêîðîñòè ê ïîñòîÿííîìó óñêîðåíèþ):

t(τ) = τ−ln2+

√
1 +

1

4
e2τ−ln(1+

√
1 +

1

4
e2τ), x(τ) =

1

2
eτ , y(τ) = 0, z(τ) = 0

(3..2)

Øëèõò ïîêàçàë, ÷òî äåòåêòîð ðåãèñòðèðóåò èçëó÷åíèå, ïðèáëèæàþùååñÿ

ê òåïëîâîìó ñ ëþáîé íàïåðåä çàäàííîé òî÷íîñòüþ, ÷òî ÿâëÿåòñÿ

äîñòàòî÷íî èíòåðåñíûì ðåçóëüòàòîì. Äåéñòâèòåëüíî, êàê áûëî ïîêàçàíî

ðàíåå, èìåííî âîçíèêíîâåíèå ãîðèçîíòîâ â ìåòðèêå Ðèíäëåðà ïðèâîäèò

ê íåòîæäåñòâåííîñòè âàêóóìíûõ ñîñòîÿíèé |0M〉 è |0R〉. Îäíàêî, ïðè

òðàåêòîðèè äåòåêòîðà, òîëüêî ïðèáëèæàþùåéñÿ ê ïîñòîÿííîìó óñêîðåíèþ

â îòñóòñòâèå êàêèõ-ëèáî ãîðèçîíòîâ, ñïåêòð âñå ðàâíî îêàçûâàåòñÿ

áëèçêèì ê ïëàíêîâñêîìó. Áîëåå òîãî, â ëþáîé çàäàííûé ìîìåíò
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âðåìåíè ïîñëåäóþùàÿ òðàåêòîðèÿ äåòåêòîðà ìîæåò ïîìåíÿòüñÿ, à ñïåêòð

ðåãèñòðèðóåìîãî èçëó÷åíèÿ, ñîãëàñíî ñåãîäíÿøíèì ïðåäñòàâëåíèÿì,

ôîðìèðóåòñÿ íà îñíîâå èñòîðèè äâèæóùåãîñÿ äåòåêòîðà. Îäíàêî,

ðåçóëüòàò îêàçûâàåòñÿ âñå ðàâíî òàêèì, êàê åñëè áû äåòåêòîð "çíàë"÷òî

áóäåò äâèãàòüñÿ ñ ïîñòîÿííûì óñêîðåíèåì.

3.2. Êîëåáàíèÿ íóëåâûõ ìîä

Íåîáû÷íûé ïîäõîä ê ïîëó÷åíèþ ïëàíêîâñêîãî ñïåêòðà áûë

ïðåäëîæåí Ò.Áîéåðîì [9]. Â ñâîåé ðàáîòå îí óêàçàë íà ñâÿçü ìåæäó

íóëåâûìè êîëåáàíèÿìè ïîëÿ è òåïëîâûì èçëó÷åíèåì ïðè ïîìîùè

êîíôîðìíûõ ïðåîáðàçîâàíèé â äâóìåðíîì ïðîñòðàíñòâå, çàìåäëÿþùèõ

âðåìÿ è ïåðåâîäÿùèõ íîðìàëüíûå êîëåáàòåëüíûå ìîäû â íîðìàëüíûå.

Òàêàÿ ñâÿçü ìîòèâèðîâàíà ðàññìîòðåíèåì ýôôåêòà Êàçèìèðà

[14], çàêëþ÷àþùåãîñÿ â âîçíèêíîâåíèè ñèë ïðèòÿæåíèÿ ìåæäó äâóìÿ

ýëåêòðè÷åñêè íåéòðàëüíûìè ïàðàëëåëüíûìè ïëàñòèíàìè. Ñèëû Êàçèìèðà

âîçíèêàþò âñëåäñòâèå òåïëîâûõ êîëåáàíèé ïîëÿ, îäíàêî îíè íå èñ÷åçàþò

äàæå ïðè ñòðåìëåíèè òåìïåðàòóðû ê íóëþ, ÷òî óêàçûâàåò íà íàëè÷èå

íóëåâûõ êîëåáàíèé ïîëÿ.

Â ïðîñòðàíñòâå Ìèíêîâñêîãî óïîìÿíóòûå âûøå êîíôîðìíûå

ïðåîáðàçîâàíèÿ ìîæíî çàïèñàòü â ïðîñòîé ôîðìå:

t→ t′ = σt, x→ x′ = σx, σ = const (3..3)

Òàêèå ïðåîáðàçîâàíèÿ ïåðåâîäÿò ïëîñêèå âîëíû ñ ÷àñòîòîé |k| â ïëîñêèå

âîëíû ñ ÷àñòîòîé
|k|
σ
, à êîëåáàòåëüíûå ìîäû φ(t, x)k = eikx−i|k|t â

êîëåáàòåëüíûå ìîäû φ′(t′, x′)k = ei
k
σx
′−i |k|σ t

′
. Ïîñëåäíèå ìîäû ìîãóò

áûòü ðàññìîòðåíû êàê ôóíêöèè îò ñòàðûõ êîîðäèíàò φ′(t, x). Òàêèì

îáðàçîì, êîíôîðìíîå îòîáðàæåíèå ìîæíî ðàññìàòðèâàòü íå â ñìûñëå

ïðåîáðàçîâàíèÿ êîîðäèíàò è ìåòðèêè, à â ñìûñëå ïðåîáðàçîâàíèÿ

êîëåáàòåëüíûõ ìîä:
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φ(t, x)k → φ(t, x)σk = φ(σt, σx)k (3..4)

Àíàëîãè÷íûé ïîäõîä ìîæíî ðåàëèçîâàòü è â êîîðäèíàòàõ Ðèíäëåðà,

÷òî è áûëî ñäåëàíî Áîéåðîì. Äàëåå îí ïîêàçàë, ÷òî òàêèå ïðåîáðàçîâàíèÿ

îñòàâëÿþò íåèçìåíûìè ñïåêòðàëüíóþ ôîðìó íóëåâûõ êîëåáàíèé âî âñåõ

èíåðöèàëüíûõ ñèñòåìàõ îòñ÷åòà, â òî âðåìÿ êàê â ðèíäëåðîâñêîé ñèñòåìå

êîîðäèíàò ïîäîáíûå ïðåîáðàçîâàíèÿ âåäóò ê âîçíèêíîâåíèþ òåïëîâîãî

èçëó÷åíèÿ ñ íåíóëåâîé òåìïåðàòóðîé. Îáðàòíûì ïðåîáðàçîâàíèåì

êîîðäèíàò (èç Ðèíäëåðà â Ìèíêîâñêèé) Áîéåð ïîêàçàë, ÷òî ñïåêòð òàêîãî

òåïëîâîãî èçëó÷åíèÿ ïðèíèìàåò âèä ïëàíêîâñêîãî èçëó÷åíèÿ íóëåâûõ

êîëåáàòåëüíûõ ìîä ïðîñòðàíñòâà Ìèíêîâñêîãî.

Ñâÿçü ïëàíêîâñêîãî ñïåêòðà ñ íóëåâûìè êîëåáàòåëüíûìè ìîäàìè

áûëà ïðîäåìîíñòðèðîâàíà è â ðàáîòå À.Ëàíäóëôî, Ñ.Ôóëëèíãà è

Äæ.Ìàòñàñà [8], ãäå àâòîðû ïîêàçàëè ÷òî èìåííî íóëåâûå êîëåáàòåëüíûå

ìîäû ïðîñòðàíñòâà Ðèíäëåðà âíîñÿò âêëàä â ôîðìèðîâàíèå ñïåêòðà.

Ýòà ñâÿçü èíòåðåñíà òåì, ÷òî äëÿ íóëåâûõ êîëåáàòåëüíûõ ìîä

äëèíà âîëíû λ → ∞, è ïîýòîìó, ïî ñóòè, îíè õàðàêòåðèçóþòñÿ

ãëîáàëüíîé ñòðóêòóðîé ïðîñòðàíñòâà-âðåìåíè. Â ñâîþ î÷åðåäü, ðàç ñïåêòð

ôîðìèðóåòñÿ íóëåâûìè êîëåáàíèÿìè, òî è ñïåêòð îïðåäåëÿåòñÿ ãëîáàëüíîé

ñòðóêòóðîé ïðîñòðàíñòâà-âðåìåíè. Òàêîé ïîäõîä ìîæåò áûòü òåñíî ñâÿçàí

ñ ðåçóëüòàòàìè ïðåäûäóùåãî ðàçäåëà - íàáëþäàòåëü "çíàåò"êàê áóäåò

äâèãàòüñÿ äàëüøå â ñèëó òîãî, ÷òî ïëàíêîâñêèé ñïåêòð - ðåçóëüòàò

ãëîáàëüíîé ñòðóêòóðû ïðîñòðàíòñâà-âðåìåíè.
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4. Íàèâíàÿ èäåÿ

Ñäåëàåì ïîïûòêó ïîäîéòè ê ýôôåêòó Óíðó ñ åùå îäíîé ñòîðîíû.

Êàê èçâåñòíî, êâàíòîâàÿ ìåõàíèêà ìîæåò áûòü èçëîæåíà â òðåõ ðàçëè÷íûõ

ïîäõîäàõ. Îäèí èç íèõ, êàðäèíàëüíî îòëè÷àþùèéñÿ îò îñòàëüíûõ, ÿâëÿåòñÿ

ïîäõîäîì Ôåéíìàíà [7]. Îí çàêëþ÷àåòñÿ â ñóììèðîâàíèè âêëàäîâ îò

àìïëèòóä âñåõ òðàåêòîðèé, ïðèâîäÿùèõ ê èñêîìîìó ñîáûòèþ:

K(2, 1) =

2∫
1

eiS[x]Dx (4..1)

Çäåñü Dx îáîçíà÷àåò èíòåãðèðîâàíèå ïî âñåì âîçìîæíûì òðàåêòîðèÿì,

ñîåäèíþùèõ ñîáûòèÿ 1 è 2, à S[x] - äåéñòâèå, îïèñûâàþùåå ñèñòåìó.

Êâàäðàò ìîäóëÿ àìïëèòóäû áóäåò îïðåäåëÿòü âåðîÿòíîñòüþ èñõîäíîãî

ñîáûòèÿ. Ôåéíìàíîâñêèé ïîäõîä ìîæíî îáîáùèòü è íà ñëó÷àé êâàíòîâîé

òåîðèè ïîëÿ, èìåííî ýòèì ìû ñåé÷àñ è âîñïîëüçóåìñÿ.

Ðàññìîòðèì äëÿ äâóìåðíîãî ïðîñòðàíñòâà Ìèíêîâñêîãî ïåðåõîä â

êîîðäèíàòû Ðèíäëåðà â ñëåäóþùåé ôîðìå:

x = ξcosh(η)

t = ξsinh(η)
(4..2)

Ïðè ýòîì ìåòðèêà ïðèíèìàåò âèä:

ds2 = ξ2dη2 − dξ2 (4..3)

Â òàêèõ êîîðäèíàòàõ òðàåêòîðèÿ ξ = const ñîîòâåòñâóåò äâèæåíèþ ñ
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ïîñòîÿííûì óñêîðåíèåì α =
1

ξ
â ïðîñòðàíñòâå Ìèíêîâñêîãî, ïðè ýòîì

ñîáñòâåííîå âðåìÿ óñêîðÿþùåãîñÿ íàáëþäàòåëÿ τ =
η

α
. Îñíîâíîå îòëè÷èå

îò (2.5) òåïåðü ñîñòîèò â òîì, ÷òî ïðè èçìåíåíèè −∞ < ξ < +∞
ïîêðûâàþòñÿ îáà êëèíà. Â òàêèõ êîîðäèíàòàõ ïëîòíîñòü Ëàãðàíæèàíà

(1.12) äëÿ áåçìàññîâîãî ñêàëÿðíîãî ïîëÿ ïðèíèìàåò âèä:

L =
1

2

√
−g(

1

ξ2
(φ,η)

2 − (φ,ξ)
2) (4..4)

Çäåñü g = det(gµν) è â ðàññìàòðèâàåìûõ êîîðäèíàòàõ ðàâåí −ξ2.

Ñîîòâåòñòâóþùèå óðàâíåíèÿ Ýéëåðà-Ëàãðàíæà:

∂2φ

∂η2
− ξ∂ξ(ξ∂ξφ)) = 0 (4..5)

Ðåøåíèå òàêîãî óðàâíåíèÿ íàéäåì â âèäå φ = e−iω
′ηg(ξ), ãäå g(ξ)

óäîâëåòâîðÿåò óðàâíåíèþ:

ω′2g(ξ) + ξ∂ξ(ξ∂ξg(ξ)) = 0 (4..6)

Åãî ðåøåíèå:

g(ξ) = Asin(ω′ln(ξ) + ϕ) (4..7)

Çäåñü A - íîðìèðóþùèé ìíîæèòåëü.

Òåïåðü ïåðåéäåì íåïîñðåäñòâåííî ê ïîïûòêå ðåàëèçîâàòü èäåþ ýòîé

ãëàâû. Äëÿ ýòîãî âñïîìíèì, ÷òî, ðàñêëàäûâàÿ ïîëå φ ïî íàáîðó

îðòîíîðìèðîâàííûõ ìîä, ìû, ïî ñóòè, ïðåäñòàâëÿëè ïîëå â âèäå

ñîâîêóïíîñòè íåçàâèñèìûõ îñöèëëÿòîðîâ ñ ÷àñòîòàìè ω = |k|, à îïåðàòîðû
ak, a

†
k èãðàëè ðîëü ÷èñëà ýòèõ îñöèëëÿòîðîâ. Ðàññìòîðèì îäèí èç òàêèõ

îñöèëëÿòîðîâ â ñèñòåìå êîîðäèíàò (4.2) è ïîäñòàâèì õàðàêòåðèçóþùóþ

åãî ìîäó â ïëîòíîñòü Ëàãðàíæèàíà (4.4). Ïîëó÷èì:
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L = −1

2
ξ(
ω′2A2

ξ2
e2iω′ηsin2(kln(ξ)+φ)+

ω′2A2

ξ2
e2iω′ηcos2(kln(ξ)) = −ω

′2A2

2ξ
e2iω′η

(4..8)

Ìû õîòèì, âîñïîëüçîâàâøèñü (4.1), îïðåäåëèòü âåðîÿòíîñòü íàáëþäåíèÿ

÷àñòèö óñêîðÿþùèìñÿ íàáëþäàòåëåì. Äëÿ ýòîãî ðàññìîòðèì äåéñòâèå íà

òðàåêòîðèè ξ =
1

α
:

S =

∫ ∫
dξdη

+∞∫
−∞

dτδ(ξ − 1

α
)δ(η − τα)L(ξ, η) (4..9)

Ââîäÿ áåñêîíå÷íûå ïðåäåëû èíòåãðèðîâàíèÿ, ìû ïðåäïîëàãàåì, ÷òî

ðàâíîóñêîðåííûé íàáëþäàòåëü äâèæåòñÿ áåñêîíå÷íî äîëãî. Ïîäñòàâëÿÿ

(4.9), èìååì:

S = −ω
′2A2α

2

+∞∫
−∞

dτe2iω′τα (4..10)

Â íîðìèðîâêå, ââåäåíîé â íà÷àëå ðàáîòû, A2 =
1

4πω′
. Äàëåå, èç âèäà

çàâèñèìîñòè φ = e−iω
′ηg(ξ) è ñâÿçè êîîðäèíàòû η ñ ñîáñòâåííì âðåìåíåì -

η = ατ , ñëåäóåò, ÷òî ôèçè÷åñêèé ñìûñë ÷àñòîòû íåñåò ïðîèçâåäåíèå αω′.

Ïóñòü òåïåðü êàæäûé îñöèëëÿòîð õàðàêòåðèçóåòñÿ íå êîíêðåòíîé

÷àñòîòîé, à íåêîòîðûì èíòåðâàëîì ÷àñòîò ∆ω = ω − ω∗. Îêîí÷àòåëüíî
èìååì äëÿ äåéòñâèÿ îäíîãî òàêîãî îñöèëëÿòîðà:

S = −∆ω

8
δ(∆ω) (4..11)

Ìû õîòèì îïðåäåëèòü âåðîÿòíîñòü íàáëþäåíèÿ ÷àñòèöû ñ ÷àñòîòîé ω.

Äëÿ ýòîãî, âîîáùå ãîâîðÿ, íóæíî ïðîèíòåãðèðîâàòü ïî âñåì âîçìîæíûì

êîíôèãóðàöèÿì ïîëÿ φ, íî â íóëåâîì ïîðÿäêå òî÷íîñòè çíà÷åíèå

23



àìïëèòóäû áóäåò ñâîäèòüñÿ ê eiSextr , ãäå Sextr - ýêñòðåìàëüíîå äåéñòâèå.

×òîáû ïîëó÷èòü òàêîå äåéñòâèå, ìîæíî ïðîèíòåãðèðîâàòü äåéñòâèå (4.11)

ïî âñåì ÷àñòîòàì. Ýòî íåïðîòèâîðå÷èâî, òàê êàê îñöèëëÿòîðû äðóã

ñ äðóãîì íå âçàèìîäåéòñâóþò è (4.11) áûëî ïîëó÷åíî ïîäñòàíîâêîé â

íåãî óðàâíåíèé Ýéëåðà-Ëàãðàíæà äëÿ êàæäîãî èç îñöèëëÿòîðîâ (ïî-

äðóãîìó, (4.11) - ýêñòðåìàëüíûå äåéñòâèÿ äëÿ êàæäîãî îñöèëëÿòîðà

ïî-îòäåëüíîñòè). Ïðè ýòîì íåîáõîäèìî ó÷èòûâàòü ïëîòíîñòü ÷èñëà

îñöèëëÿòîðîâ íà èíòåðâàë ÷àñòîò ρ(ω). Ïîëó÷èì:

Sextr = −
+∞∫
−∞

∆ω

8
δ(ω − ω∗)ρ(ω∗)dω∗ (4..12)

Åñëè ïðåäïîëîæèòü, ÷òî ρ(ω) èìååò âèä

ρ(ω) =
8πω

α∆ω
(4..13)

òî ýêñòðåìàëüíîå äåéñòâèå ïðèíèìàåò âèä:

Sextr(ω) = −πω
α

(4..14)

Âîçâîäÿ àìïëèòóäó â êâàäðàò, ïîëó÷àåì ñ òî÷íîñòüþ äî íîðìèðîâî÷íîãî

ìíîæèòåëÿ âåðîÿòíîñòü íàáëþäàòü íà òðàåêòîðèè îäíó ÷àñòèöó ñ ÷àñòîòîé

ω:

P = e−
2πω
α (4..15)

Ñ÷èòàÿ, ÷òî íà óðîâíå ñ ÷àñòîòîé ω ìîæåò áûòü ëþáîå ÷èñëî ÷àñòèö (÷òî

ñîáñòâåííî è ïðåäïîëàãàëîñü ðàíåå), ïîëó÷èì äëÿ ñòàòèñòè÷åñêîé ñóììû:
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Z =
∞∑
n=0

e−
2πωn
α (4..16)

È â èòîãå, ïî àíàëîãèè ñ áîçîíàìè, ìîæíî ïîëó÷èòü äëÿ ñðåäíåãî ÷èñëà

íàáëþäàåìûõ ÷àñòèö:

< n >= (e2πω/a − 1)−1 (4..17)

×òî ñîîòâåòñòâóåò ïëàíêîâñêîìó èçëó÷åíèþ ñ òåìïåðàòóðîé T =
α

2π
.

Ñóùåñòâåííóþ ðîëü ïðè òàêîì âûâîäå èãðàåò ïðåäïîëîæåíèå î

çàâèñèìîñòè ρ(ω). Íà ñàìîì äåëå, êà÷åñòâåííóþ çàâèñèìîñòü îò óñêîðåíèÿ

è ÷àñòîò ìîæíî ïîëó÷èòü èç ñëåäóþùèõ ñîîáðàæåíèé: ρ(ω) v ω′ =
ω

α
,

òàê êàê ìû ïðåäïîëàãàëè, ÷òî êàæäûé èç îñöèëëÿòîðîâ õàðàêòåðèçóåòñÿ

øèðèíîé ∆ω, òî è ρ(ω) v
ω

α∆ω
. Íåîáõîäèìîñòü ââåäåíèÿ ôàêòîðà 8π

ìîæåò áûòü ñâÿçàíà ñ ââåäåíèåì íîðìèðîâî÷íîãî ìíîæèòåëÿ A.

Îòìåòèì, ÷òî åñëè áû ìû ïðîâîäèëè àíàëîãè÷íûå ðàññóæäåíèÿ

äëÿ ïðîñòðàíñòâà Ìèíêîâñêîãî, òî ïîëó÷èëè áû íóëåâóþ âåðîÿòíîñòü

íàáëþäåíèÿ ÷àñòèö. Äåéñòâèòåëüíî, â ïðîñòðàíñòâå Ìèíêîâñêîãî

ïëîòíîñòü Ëàãðàíæèàíà äëÿ áåçìàññîâîãî ñêàëÿðíîãî ïîëÿ îáðàùàåòñÿ â

íîëü íà óðàâíåíèÿõ ïîëÿ, çíà÷èò, âåðîÿòíîñòü îáíàðóæåíèÿ ñòàíîâèòñÿ

ðàâíîé
e0

∞∑
n=0

e0n

= 0 âíå çàâèñèìîñòè îò ÷àñòîòû.

Ëþáîïûòíûì ðåçóëüòàòîì çäåñü ÿâëÿåòñÿ òî, ÷òî ïëàíêîâñêèé ñïåêòð

áûë ïîëó÷åí â ðåçóëüòàòå èíòåãðèðîâàíèÿ ïî âñåé òðàåêòîðèè: −∞ < τ <

+∞. Òàêîå ðàññóæäåíèå ìîæåò, êàê è ãîâîðèëîñü ðàíåå, ñâèäåòåëüñòâîâàòü

î ãëîáàëüíîé çàâèñèìîñòè îò ïðîñòðàíòñâà-âðåìåíè èëè, êàê â äàííîì

ñëó÷àå, î ãëîáàëüíîé çàâèñèìîñòè îò òðàåêòîðèè.
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ÇÀÊËÞ×ÅÍÈÅ

Ðàññìîòðåííûå íàìè âûøå óìîçàêëþ÷åíèÿ íàòàëêèâàþò, êàê óæå

áûëî íåîäíàêðàòíî ñêàçàíî, íà ìûñëü î ñâÿçè ìåæäó ïëàíêîâñêèì

ñïåêòðîì è ñòðóêòóðîé òðàåêòîðèè.

Ðàññìîòðåâ ñâÿçü ìåæäó êîëåáàòåëüíûìè ìîäàìè ïîëÿ â

ïðîñòðàíñòâå Ìèíêîâñêîãî è â ïðîñòðàíñòâå Ðèíäëåðà, ìû óáåäèëèñü â

òîì, ÷òî â ñèëó íåàíàëèòè÷íîñòè ïîñëåäíèõ (êàê ðåçóëüòàò íàëè÷èÿ

ãîðèçîíòîâ), êîýôôèöèåíòû Áîãîëþáîâà βij îòëè÷íû îò íóëÿ, à,

çíà÷èò, è ÷èñëî ÷àñòèö (1.19) îòëè÷íî îò íóëÿ è, ñîãëàñíî (2.13), äàåò

òåïëîâîé ñïåêòð. Èç àíàëèçà ñòàòåé [8, 9] áûë ïîä÷åðêíóò âêëàä íóëåâûõ

êîëåáàòåëüíûõ ìîä â ïëàíêîâñêèé ñïåêòð. Ðàññìîòðåíèå ðàâíîóñêîðåííîãî

äåòåêòîðà â ïðîñòðàíñòâå Ìèíêîâñêîãî, ðàáîòà C.Øëèõòà [3] è íàèâíàÿ

èäåÿ ÷åòâåðòîé ãëàâû òàêæå ïðèâåëè ê ïëàíêîâñêîìó ñïåêòðó. Îäíàêî,

âî âñåõ ýòèõ ñïîñîáàõ òåïëîâîé ñïåêòð âîçíèêàë â ïðåäïîëîæåíèè î òîì,

÷òî íàáëþäàòåëü äâèæåòñÿ ñ ïîñòîÿííûì óñêîðåíèåì áåñêîíå÷íî äîëãîå

âðåìÿ. Íî òîãäà âîçíèêàåò âîïðîñ, ÷òî áóäåò, åñëè íàáëþäàòåëü áóäåò

äâèãàòüñÿ ñ ïîñòîÿííûì óñêîðåíèåì ëèøü êîíå÷íûé èíòåðàâë âðåìåíè?

Åñëè íàøè ðàññóæäåíèÿ âåðíû, òî ïðè äâèæåíèè ñ ïîñòîÿííûì

óñêîðåíèåì îãðàíè÷åííîå âðåìÿ, ñëåäóåò îæèäàòü, ÷òî íàáëþäàòåëü óæå

íå áóäåò ðåãèñòðèðîâàòü ïëàíêîâñêèé ñïåêòð, òàê êàê áóäóò âîçíèêàòü

ïîïðàâêè, íàðóøàþùèå ýòó çàâèñèìîñòü.

Â ýòîé ñâÿçè, âñïîìíèì î ïðèíöèïå ýêâèâàëåíòíîñòè è õîêèíãîâñêîì

èçëó÷åíèè. Êàê óæå áûëî óïîìÿíóòî âî ââåäåíèè, èñïàðåíèå ÷åðíûõ äûð

âåäåò ê âîçíèêíîâåíèþ èíôîðìàöèîííîãî ïàðàäîêñà. Îäíàêî, èñïàðåíèå

÷åðíîé äûðû äëèòñÿ â òå÷åíèå êîíå÷íîãî ïðîìåæóòêà âðåìåíè, èíà÷å êàê

òàêîâîå èñïàðåíèå íå èìååò ñìûñëà. Èç ïðèíèöïà ýêâèâàëåíòíîñòè ñëåäóåò

îæèäàòü, ÷òî òîãäà è ñïåêòð ÷åðíîé äûðû íå áóäåò òåïëîâûì, à çíà÷èò, è

íåò ïîòåðè èíôîðìàöèè.
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Âñïîìèíàÿ ñïîð Ïèðñåëëà è Õîêèíãà, ìîæíî ñêàçàòü, ÷òî ñèòóàöèÿ

âûãëÿäèò òàê, êàê åñëè áû ìû òåðÿëè âñþ èíôîðìàöèþ îá ýíöèêëîïåäèè,

ïðåäïîëîæèâ, ÷òî îíà áóäåò ãîðåòü áåñêîíå÷íî äîëãî. Îäíàêî, çíàÿ, ÷òî

îíà ñãîðèò çà êîíå÷íîå âðåìÿ, ìû ìîæåì ïîëó÷èòü èíôîðìàöèþ è î ñàìîé

ýíöèêëîïåäèè.

Êîíå÷íî, ýòî óòâåðæäåíèå òðåáóåò äîïîëíèòåëüíûõ äîêàçàòåëüñòâ, è

íà äàííîì ýòàïå ñóùåñòâóåò êàê èäåÿ, ïîäêðåïëåííàÿ ðåçóëüòàòàìè àíàëèçà

ýôôåêòà Óíðó äëÿ ðàâíîóñêîðåííîãî íàáëþäàòåëÿ.
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